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Abstract

Many studies have demonstrated a strong correlation between daily physical activity
levels and health. Walking is the most frequent and basic unit of daily human activity.
As people become increasingly concerned about their health, daily steps are used as
an indicator to quantify their physical activity levels. As a result, various methods of
step counting have been widely investigated. An end-to-end real-time step counting
application using a wearable RESpeck monitor has been introduced in this work. This
implementation has two steps: first, classifying human activity and capturing the
walking category. Then, for different walking activities like running and walking,
different step counting algorithms are applied to count the number of steps. In the first
step, we present an 3-layer hierarchical deep learning model, while experimenting with
different deep learning model architectures and the tuning of hyperparameters. Each
layer of the model is assigned a specific responsibility to ensure that their combination
is effective. In the second step, data of 5 walking types from 10 volunteers, each
with 30 steps. Our step counting algorithm uses this data to get the optimal parameter
values for a more accurate step counting. To test the robustness of the whole system,
we implemented the algorithm on an Android app and compared the performance
with commercial pedometers, such as the Apple Watch. The result from our android
application in real-time tests is better than a pedometer app with 12,000 downloads (by
2022.4.7) from the Apple Application Store and close to the apple watch.
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Chapter 1

Introduction

1.1 Motivation for the project

Walking is a fundamental unit of human locomotion. When researchers began to study
the relationship between daily physical activity levels and health[8] , the number of steps
taken each day became a suitable measurement to quantify the activity level. As steps
are objective, intuitive and has strong associations with physical health variables.[37]

Many longitudinal intervention studies have revealed that pedometers motivate wearers
to take more steps.[31][21] In a 2007 study, through a randomised controlled trial of
2767 participants, the group using a pedometer had a significant increase in physical
activity of 2491 steps compared to the group not using a pedometer. The pedometer
group had a 0.38 decrease in body mass index and a 3.8 mm Hg decrease in systolic
blood pressure.[11]The results showed that pedometer use was associated with a increase
in physical activity and decreased BMI and blood pressure.

1.2 Project objective

This project aims to achieve a high precision pedometer comparable to commercial
pedometers. Two important conditions are needed to achieve this goal. The first is to find
walking-like activities from other daily human activities. Traditionally, the algorithms
used for detection have been based on heuristic strategies. Usually, researchers need
to review the data collected from pedometer sensors manually, and they analyse and
deconstruct a walking pattern to form a set of heuristic rules to discriminate whether
the activity type is walking. Representative approaches are threshold detection[33]
and autocorrelation[2], where an algorithm classifies sensor data as walking activity
and records steps when it exceeds a threshold of previously observed walking activity.
The autocorrelation method discriminates whether the walk is the same type by saving
the pattern of previously recorded walks and comparing it with newly received data.
However, there are many different types of human activity, even walking, and these
classical algorithms are prone to classification errors, leading to false positive step
counts.
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The second challenge need to overcome is to count steps in real-time. Many studies
look for steps in a recorded data segment. They use different filters to smooth out
the waveform and count the steps. For example, the zero-crossing algorithm[34], for
example, records a step whenever two points cross the 0 points. Without filters, there
are many small fluctuations in the data, such as multiple crossing of 0 points in a short
period, which would cause the a significant loss in accuracy. When counting steps in
real-time, however, to avoid missing steps that span two windows of data, we only count
steps after a continuous period of walking. So the length of the walking data is flexible.
A fixed filter may make the waveform too smooth or barely work. An algorithm does
not require a filter or uses a filter independent of the length of the data is needed.

1.3 Results achieved

Two implementations have been done. One is based on peak detection with minimum
peak distance (also known as windowed peak detection as peak detection is claimed
the best step counting algorithm [9]), and the other is based on wavelet transform.
Results are compared with the Apple watch and Steps (an app for Apple phones). 5
volunteers are asked to follow a set walking routine of 200 steps. The Apple Watch
had the maximum accuracy of 95.2%, with peak detection approaching 93.1%. The
wavelet transform achieved an accuracy of 88.8%, while Steps achieved an accuracy
of 86.9%. It is worth noting that the peak detection algorithm produces false positive
and false negative errors. In contrast, wavelet transform has almost only false negative
errors. Therefore, the peak detection algorithm is more accurate on a scale of 200 steps.
However, they have very similar accuracy in other tests with lower step numbers.

In addition, we have found that the most significant factor affecting the accuracy of the
step counting algorithm is the frequency, or speed, of walking. In future studies, deep
learning models may applied to measure walking frequency to develop a more precise
pedometer directly.
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Background and Related work

2.1 Human activity recognition(HAR)

Human activity recognition(HAR) is a rapidly developing area that emerged from
the broader disciplines of ubiquitous computing. Recently, there has been a boom in
research into machine learning approaches for HAR challenges. These techniques have
shown very efficient at extracting and learning information from activity datasets. The
method includes highly derived hand-crafted feature machine learning algorithms and
hierarchically self-evolving feature extract deep learning algorithms. HAR is classified
into video-based HAR and sensor-based HAR[13]. While video-based HAR analyses
films or photos captured by the camera that feature human movements, sensor-based
HAR analyses motion data from smart sensors such as an accelerometer or a gyroscope.
Due to the rapid advancement of sensor technology and ubiquitous computing, sensor-
based HAR is gaining popularity and widespread application while maintaining a high
level of privacy protection. As a result, the primary emphasis of this article is on
sensor-based HAR. Sensor based HAR has many applications such as smart home
activity recognition[41][4][30], functional, and behavioral health assessment[32],Sports
analytics[6].

2.1.1 HAR machine learning algorithms

Machine learning approaches have been shown to be more successful in extracting
knowledge and discovering, learning, and inferring actions from data than conventional
mathematical and statistical procedures.[28]. In shallow learning-based HAR systems,
the often employed feature heuristics are heavily reliant on the researcher’s domain
expertise, and the success of machine learning approaches is strongly dependent on the
data representation[7].The commonly used features are time domain features (mean,
variance, time sequences;[12]), frequency domain features (Fourier transform, entropy),
and other transformations ([19]).

Traditional machine learning approaches depend primarily on feature extraction, with
human a priori knowledge determining which characteristics to use. The extraction of
features is dependent on one’s domain expertise, such as Fourier transforms, wavelet
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transforms, and entropy. This may result in an approximation of features. This approxi-
mates features and often requires numerous training sessions and feature combinations
for optimal outcomes. On the other hand, deep learning methods can extract char-
acteristics directly from raw data by performing some nonlinear transformation. We
will perform activity classification using a deep learning technique, given the need
to develop a real-time pedometer on Android, Code refactoring for feature extraction
in java would be very time consuming. The nonlinear transformation determines the
type of deep learning network. Deep learning has been popular in the last few years,
and numerous works have been done using deep learning in HAR. The popular deep
learning techniques in HAR include CNNs, recurrent neural networks (RNN), long-
short-term memory (LSTM) and RNN networks. The next section will discuss the
rationale behind these models.

2.1.2 Validation of algorithm

Another issue that step counting algorithms encounter is determining the algorithm’s
validity. In a validation research by Foerster, The accuracy of action classification can
reach 95.6 percent when performed under controlled experimental conditions. However,
after gathering data from people in their daily lives and identifying it, the accuracy rate
decreased dramatically to 66%.[14] Typically, testing are conducted in a quantitative
setting in which the tester walks or runs in a prescribed manner for a certain amount of
time. Steps, however, are not often restricted to continuous walking or running in daily
life, and individuals may make extremely short strides. A well-performing algorithm in
a laboratory context may suffer severe performance degradation in a real-world situation.
As a result, another aspect of this work was to deploy the suggested algorithm to an
Android app and test it in a real setting in order to produce a more practical and robust
method for tracking steps.

2.2 Devices

2.2.1 Commercial and experimental devices

As people become increasingly concerned about their physical health, they attempt
to quantify the amount of exercise by tracking the amount of walking they do each
day. This has encouraged the development of commercial pedometers. For a search on
Amazon for pedometers gives 276 results and 13 brands (March 2022). Meanwhile, the
market for wearable devices is still growing at a rate of 20% per year and will reach 150
billion euros by 2028. [26] According to Cisco Systems, the wearable industry in the
United States looks promising, with the number of linked wearable devices predicted to
exceed 439 million in North America by 2022. By 2022, North America is predicted
to be the area with the most 5G-connected wearable devices. In 2017, the 439 million
connections in North America will surpass the 4G network by 222 million.

Wristbands and smart watches are the most popular products on the commercial market
as their portability and integration of additional features[20]. The variety of gadgets
employed in research is greater than that of commercially accessible wearable devices.
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Figure 2.1: The Apple Watch (left) and the Fitbit (right) are two of the most popular
fitness monitoring gadgets available. With a combined market share of approximately 59
percent(2022 Q1) in the north America market for smart wearable devices.[20]

They are worn on different parts of the body for use. For example, on the waist, thighs,
ankles, wrists. To acquire more data, some investigations require the user to wear three
or more devices and sensors attached to their legs, foot, and knees[22]. To store and
interpret the data, users were even needed to carry backpacks weighing up to Skg[27].
While this method allows for the collection of more data, the equipment is sophisticated,
inconvenient to wear, and expensive. Possessing the ability to scale up and acquire
additional data is a challenge. Wearable gadgets should therefore be as simple as
feasible to use and should be worn in an unobtrusive manner. Additionally, this design
will reduce energy usage to maximise user convenience.

2.2.2 Sensors

Accelerometers with three axes are perhaps the most extensively used and effective
sensors for determining walking activity[17][18], In these studies, recognition rates
for walking were generally greater than 95%, despite differences in methodology. Ac-
celerometers are affordable and consume little electricity[29]. Our research discovered
that accelerometers do not perform well at detecting relatively slow motions, such
as waddling, because the acceleration changes associated with such movements are
insignificant. To address this issue, we adopted gyroscopes, which are sensors that
measure angular velocity and are more sensitive than accelerometers, capturing more
data and subtle movements. However, because to the gyroscope’s significant power
consumption, it is only activated when absolutely essential. Numerous studies have
examined the influence of acceleration sampling rate on recognition accuracy, conclud-
ing that while an increase in sampling rate is advantageous below 20Hz[22], there is a
slight further improvement in recognition accuracy above this threshold.

In this work, we use a device called the RESpeck, which described in detail in section
2.2.4.
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2.2.3 Respeck

The RESpeck is a non-invasive wearable device developed at the Centre for Speckled
Computing at the University of Edinburgh’s School of Informatics. It enables simul-
taneous tracking of activity and respiratory data. All of our data used in this work
is collected via RESpeck and the associated Airespeck app. We may either keep the
acquired data locally or directly upload it to the cloud. The advantage of this device
is its portability. The user can apply it with a plaster on the left side’s underside of
the last rib. Due to the device’s small dimensions (4.4cm x 3.6cm x 0.6cm)2.2, it will
not obstruct the wearer’s daily activities, and so the data collected will provide a more
accurate image of the actual situation. Compared to some more extensive devices,
the RESpeck may also be worn daily. In Arvind’s research with this device[l], the
participant wore the RESpeck except when showering.

Figure 2.2: Dimensions of RESpeck and Wearing demonstration[35]

The Respeck is composed of a tri-axial accelerometer for measuring non-gravitational
accelerations and a gyroscope for determining rotational velocities. Due to the fact that
gyroscopes use many orders of magnitude more energy than accelerometers, although
we obtained data on acceleration and angular velocity for a variety of activities using a
25Hz sample rate. The data is also downsampled to determine the algorithm’s accuracy
when just 12.5Hz accelerometer data was used.

RESpeck communicates collected data through Bluetooth to the mobile app; RESpeck
does not process or store the data. This enables the RESpeck to operate for an extended
period of time, up to six months when only the 12.5Hz sample rate accelerometer is on.

2.3 Step counting algorithms

The most extensively used threshold method counts the instant when a brief, above-
threshold acceleration is detected as a step[16][23]. The method performs best in foot
pedometers, where a very unique threshold may be obtained due to the extremely high
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acceleration experienced during stride. The short-term Fourier transform transforms
time-domain data into frequency-domain data. However, its resolution is strongly
dependent on the window length[5]. As a result, it recognises data that is greater
than a specified time period or that is sampled at a high frequency. By continually
correlating the mother wavelet with the original signal, wavelet transforms compresses
or inflates the original signal[38][40]. They are capable of capturing sudden acceleration
changes and are well suited to changes occurring over a short period of time. Certain
algorithms use stride (2 steps) as a detection target because to the stride’s very unique
frequency of roughly 1-2Hz in comparison to other human activities[25]. Agata made
a comprehensive comparison of the advantages and disadvantages of various step-
counting algorithms, the peak detection has been found with the highest accuracy[10].
So we will use two algorithms in the step counting part, peak detection and wavelet
transform.

2.3.1 Definition of a Step

In this project, we define a step as ”a movement made by lifting your foot and putting
it down in a different place” stated by Merriam-Webster.[37] While Oxford dictionary
defines a step as an act or movement of putting one leg in front of the other in walking
or running.” This statement means a step needs to retain in a continuous period of
walking and running activity. But the real situation is much more complex than that.
Other than walking and running, some activities also generate steps such as staging in
place, turning around.
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Methodology

3.1 Overview

Step counting is a two step process: firstly, the current activity is classified, and identified
as the walking; and, secondly, step counting algorithm is applied for different walking
types resulting in the number of steps. The classification uses a hierarchical machine
learning model. A discrete wavelet transform-based step counting method is used for
both step counting as well as classifying walking and non-walking activities with a good
accuracy for different types of walking. Figure 3.1 illustrates the proposed methodology.

3.2 Hierarchical Machine Learning

Figure 3.2 and Figure 3.3 given an overview of the three-layer machine learning model
and the model structure. There are three layers which uses a GRU-CNN deep learning
model in each layer. Although the structure of the model of each layer is the same, there
are differences in the choice of hyper-parameters. The following section describes the
machine learning models used in this project and justification of the 3-layer hierarchical
architecture.

3.2.1 Recurrent Neural Network (RNN)

Compared with the traditional back-propagation neural network, the cyclic neural net-
work can accept and learn from the sequence information transmitted by other neurons.
This is commonly known as the neural network with a specific memory function. Such
a neural network algorithm works well on data with time-series changes[36].

In the recurrent neural network, when the current layer neuron outputs data information
to the next layer, it will also output a hidden state information for the next layer neuron
to learn and use. This circular structure is used to store and learn the past information
to realize the learning and memory function of the past information.

Figure 3.4 shows a typical RNN neural network structure. As shown in Figure 3.4, each
RNN neural network unit is divided into three layers: input layer, hidden layer and
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Figure 3.1: Overview of the Step-Counting Methodology

output layer.

Given x;_1, Xz, X;+1 as the input time series information from time ¢ to time t + 1; 4, _1,h;
and A, as the hidden layer information from 7 to t 4+ 1; y;—1y;—1,y; and y;+ as the
output layer information from ¢ to ¢ 4+ 1.U,V and W are the neuron weight matrix of
input, output and cycle, respectively. As the neurons in each time step are connected in
series, the neuron weights of input, output and cycle are shared in the entire RNN, thus
improving the learning of the time-series information.

At any time t, the antecedent propagation of the recurrent neural network can be
expressed :
ht :f(W*Xt+U*hl_1+b) (31)

vi=8(V'h) (3.2)

In equations (3.1) and (3.2), f and g are nonlinear activation functions, Where * is the
matrix multiplication, W is the weight matrix from the input unit to the hidden unit, U
is the connection weight matrix between the hidden units, and V is the weight matrix of
the output of the hidden unit, b is the offset vector, x; is the input, y; is the output.
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Figure 3.2: Overview of Hierarchical Machine Learning

3.2.2 Long Short-Term Memory (LSTM) neural network

LSTM neural networks can effectively avoid the problems of gradient disappearance
and gradient explosion in traditional networks. By adding additional memory units,
LSTM can remember past information and store it for a long time. LSTM has strong
generalization capability, good learning ability for large and small data sets, and has
substantial advantages for dealing with nonlinear problems. The basic unit structure of
LSTM is shown in Figure 3.5.

The *Forgetting” gate f; based on the status of the last time C;_; decided to discard
and retain information. Thex; values pass passes separately ¢ And tanh functions to
determine the value to be updated and generate new candidate values for updating,
The updated value is then compared with the forgetting gate f; update the unit status
together. Updated unit status C; outputs 4, after tanh function and Oy in the output gate.
The basic equation of state of LSTM unit is updated.

iy = G(Wi [htlaxl‘] +bi> (3.3)
ay = tanh (WC [hl‘l ,x,] + bc) (34)
¢t =fxCr+irxa; 3.5

a; = o (W, [h1,x] +b,) (3.6)
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Figure 3.3: Overview of model structure

hl = Or * tanth (37)

Where x; and h; represents input vector and output vector respectively, f. i and O
represent forgetting gate, input gate and output gate respectively, C; and C;_1 represents
the last time and the current unit state respectively, 4,1 and &, represents the output
of the last time and the current hidden layer unit respectively, ¢ Represents sigmoid
activation function, tanh represents tangent function, W and b represent the weight
matrix and deviation vector.

3.2.3 Gated Recurrent Unit(GRU) network

GRU network is an improved model of long-term and short-term memory network. It
optimises the three gate functions of the long-term and short-term memory networks,
combines the forgetting gate and input gate into a single update gate, and integrates
neuron state and hidden state, effectively alleviating the problem of “gradient disappear-
ance in cyclic neural networks”, reducing the number of parameters in the long-term
and short-term memory network units, and shortening the model’s training time. The
basic structure of GRU network is shown in Figure3.6, and the mathematical description
is shown in equation below.
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Figure 3.4: RNN neural network structure diagram

rr =0 (W [h—1,x])
= G(WZ' [htflvxt])

Iy = tanh (W - [ry X hy_1,x1)) (3.8)
ht = (I_Zl‘) X ht—] +Zt X ht
Ve = G<W0'ht>

In equation 3.8, x;, hy—1, by, 14, zt,%,, y; are input vectors respectively, The state memory
variable of the previous time, the state memory variable of the current time, the state of
the update gate, the state of the reset gate, the state of the current candidate set, and the
output vector of the current time; Wy, W, Wi, W,, are update gate, reset gate, candidate
set, output vector and x; and 4, the weight parameters multiplied by the connection
matrix, I represents identity matrix;c Indicates sigmoid activation function; Tanh is a
tangent function.

GRU network takes update gate and reset gate as the core module and inputs variable
x;.The splicing matrix with the state record variable /;_ at the previous time is input
of the update gate after sigmoid nonlinear transformation. It determines what extent
the state variable at the previous time is brought into the current state. The reset gate
controls the amount of information written to the candidate set at the last time. Through
I — z times h,_; storing the information of the last time. The pass z; times h, record
the information of the current time and add them as the output of the current time.

3.2.4 Convolutional neural network(CNN)

The basic structure of convolutional neural network is shown in Figure 3.7. The overall
structure is divided into three parts: input layer, hidden layer and output layer. As the
name suggests, the input layer is the interface for inputting data. This layer converts the
input data into tensor data mode that can be calculated by neural network.

The hidden layer often contains multiple neural network layers. The effective features in
the data are extracted by convolution and pooling. The formula of convolution operation
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is shown in formula (3.9): . '
xj:k;*xj_l—kb’j 3.9)

* represents convolution operation. x; 1 represents the output data of layer j— 1. k;
represents the ith convolution kernel of layer j. b; is the corresponding offset.

The pooling operation is to compress the feature map after convolution operation. At
the same time, pooling operation is also known as down sampling operation, which
extracts the secondary features of the output features of convolution layer, so as to

reduce the amount of calculation data. There are two common pooling functions: mean
pooling and maximum pooling.

(1) Maximum pooling, as shown in formula :

P00 = max { al(im)} (3.10)

(J—Dw+1<t<jw
(2) Mean pooling, as shown in formula :

jw

pz(i.,z)zl y ol (3.11)
W= w1

plit ) is the output value of the t-th neuron of the ith characteristic map of layer [ after
passing through the pool layer; 1i1) is the output value of the ¢-th neuron of the i-th
characteristic diagram of layer L after passing through the activation function.

Finally, the characteristic data that represents the whole data is transformed into one-
dimensional. It is inputted into the full connection layer for calculation and finally
output the prediction results.
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3.2.5 Human activity data

The labelled dataset used in ”Principles and Design of IoT Systems” course taught at
the University of Edinburgh was employed to train the classifier. The labelled dataset
of 3-axis accelerometer and gyroscope data sampling at 25 Hz was collected by 48
students wearing the Respeck device for a selection of 18 activity types. The dataset
was filtered to retain only walking data together with common everyday activities such
as lying down, desk work.

The labelled shuffle walking data was collected from 10 volunteers wearing the Respeck
device for the training dataset using the same protocol as in the case of PDIOT dataset.
Volunteers were invited to imitate the shuffle walking patterns of older people by leaning
with both hands on a wheeled chair and dragging their legs in the process. Figure 3.8
and 3.9 shows images of real shuffle walking and a simulation of shuffle walking,
respectively.

Figure 3.10 shows the overview of the training dataset, including all types of activity.

3.2.6 Data prepossessing
3.2.6.1 Sliding window

Sliding window technology has a wide range of applications in human activity recognition[39].
Overlapping sliding windows are applied to segment the data collected by accelerome-
ters and gyroscopes in this work. The data is split into windows of fixed length showed
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Figure 3.8: Shuffle walking Figure 3.9: Stimulation of Shuffle walking

in 3.11 and sliding distance (the overlapping part, if the sliding distance is half the length
of the window, then each window will have 50% of the data as duplicates). We can
think of a sequence of temporal data points as a training data feed to the model with the
sliding window. The sliding window size significantly impacts the model’s classification
accuracy[3].Smaller sliding window sizes allow faster classification. Larger sliding
window sizes can be used to identify more complex long duration activities. In our
experiments, relation of different window sizes and accuracy of walking class activity
recognition are tested. A more detailed description of the experiments and the results
are presented in Chapter 4.

3.2.7 Leave one group out validation

To prevent overfitting, data is split by subjectld, also called Leave-one-subject-out
cross-validation shown in figure 3.12.
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Figure 3.10: Overview of the Training Dataset for classification
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Figure 3.11: Sliding window example

When a subject’s data is included in both the training and test sets, the model gains
an unfair advantage. Additionally, the results generated by the model will be inflated.

Accuracy will drop considerably when the model is tested on an entirely new, unseen
subject.

This is why when training a HAR model, a special kind of cross-validation: Leave-
One-Subject-Out (LOSOXV), is needed, where we leave one (or more) subject(s) in the
testing set at each iteration.

3.2.8 Model structure
3.2.8.1 First Layer - IsShuffle

In the first classification layer, shuffle walking are found. Then non-shuffle walking will
be fed into the next classifier.

The shuffle walking is classified first as it is very different from other types of gait.
Its accelerometer readings are entirely distinct from other walking types. During data
collection, volunteers put their weight on the wheelchair and walked with their feet in a
shuffling gait. The fluctuations in the accelerometer are tiny because they do not have a
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Figure 3.12: Leave-One-Subject-Out[15]

significant movement of raising and lowering the thighs. Figure 3.13 and Figure 3.14
are readings of accelerometer and gyroscope readings of shuffle walking and descending
stairs. Shuffle walking readings are smaller in accelerometer readings. Shuffle walking
is labelled with other types of walking as one walking label, then dichotomies into
walking and non-walking activities. There is a significant decrease in classification
accuracy.

Another important reason is the unbalanced distribution of the data set. Due to the small
amount of shuffle walking data collected, we adopted multiple classifications to reduce
the bias of the model.

3.2.8.2 Second Layer - IsWalk

In the second layer, the classifier finds out the walking activities and the non-walking
activities. The deep learning model has the same structure as the previous layer.
However, settings of the hyper-parameters are different. For example, the choice of
optimiser is Softmax, which is more suitable for binary classification.

Walking is very different from other activities as it has a fixed, repetitive pattern. Usually,
a walking activity has two peaks on the accelerometer data(a stride), as a stride usually
consists of at least two steps. This layer has the highest classification accuracy when
a window length of 64 is chosen, as it including a walking cycle. We investigated the
effect of window size in the Evaluation chapter.
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Figure 3.13: Descending stairs readings  Figure 3.14: Shuffle walking readings

3.2.8.3 Third Layer - FourTypeWalk

The previous layer’s output, the walking class, will be divided into four categories in
the final layer of classification: going upstairs, going downstairs, walking, and jogging.
When the step counting algorithm processes the first three walking activities, it uses
the same parameters, so the error in the classification of the first three classes does not
affect the accuracy of the final step count. The reason for not using binary classification
and still adapting a multi-classification model is twofold. Firstly, it allows for a more
balanced data set and higher accuracy. The second is that the model is more scalable
and can extend to include other walking activities such as fast running, slow walking.

3.3 Frequency domain step counting method

Walking can be seen as the cyclical, repetitive movement of a person’s body parts. A
complete gait usually has eight steps as Figure 3.15 shown. There is a specific stage in a
cycle where the acceleration peaks. The main idea of our algorithm is to summarise the
frequency of peak acceleration or gyroscope data for various walks from the available
data. The other frequencies of the original data are then filtered out using wavelet
decomposition. Finally, the number of steps is found by peak detection in filtered data.

Initial contact Loading response  Mid stance Terminal stance Pre-swing  Initial swing Mid swing Terminal swing

AN

Figure 3.15: gait phases

(a)
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3.3.1 30 step data

Ten volunteers were asked to walk 30 steps at a straight and even pace using 5 patterns.
They are walking, going upstairs, going downstairs, running and shuffle walking. The
process for collecting 30 step data is the same as collecting activity data and using the
same sensor, accelerometer and gyroscope, 25Hz sampling frequency.

3.3.2 Fast Fourier transform

First, we use the FFT(Fast Fourier transform) to obtain the spectrogram. A fast Fourier
transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of
a sequence.Fourier analysis converts the accelerometer data from time domain to the
frequency domain. The definition of DFT is

om\ hk
X(k) = Y o(n) (e*-'%) (3.12)
n=0
where k=0, 1,. .., N 1 and ®(n) is the normalized data. The frequency of the n-th

point after transformation, denoted fn, can be calculated as follows:
fn:(n—l)x% (3.13)

where f, is the sampling frequency and equals to 25 Hz. By investigating five kinds of
walk from 7 subjects to 9 subjects, we get the frequency range of peaks of accelerometer
data of each type of walking. Figure below shows the results.

These figures indicates running have the highest frequency around 2.66Hz to 2.99Hz.
Walking at normal speed, climbing stairs and downing stairs have the similarly frequency
from 1.29Hz to 2.33Hz. Finally, the shuffle walking have the lowest frequency around
0.13Hz to 0.47Hz.

3.3.3 Wavelet decomposition based de-noising

With the FFT, we have determined the frequency range of the various walks. So
the signals at other frequencies can be seen as noise. Therefore, we use wavelet
decomposition and recombination to filter out the signals at other frequencies.

In wavelet decomposition, the original signal is decomposed into sub-signals of different
frequency bands by the scale function ¢(z) and the wavelet function y(¢)-based. The
wavelet approximation coefficients ag(k) and the wavelet detail coefficients d;(k) of a
discrete signal s(z) of length M can be expressed as

ap(k) = \/—11‘_4 ; s(m) o (m) (3.14)
1 m=1
a(k) = 7o ; s(m)y;x(m) (3.15)
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j and k in equations (3.3) and (3.4), which represent the scaling of the subsignal in the
frequency domain and the translation in the time domain, respectively.

The original signal can then be reconstructed from the approximation and detail coeffi-
cients.

s(t) = %/[;ao(k)q)&k(t)+ﬁ;z]{:dj(k)\lfj7k(t) (3.16)

The above process of multi-resolution analysis of the signal using the wavelet transform
is the basis for this work’s decomposition of the acceleration and gyroscope signal for
noise reduction. Many different mother wavelet functions are available when using
wavelet analysis to process a signal. The results obtained after the transform vary, so the
appropriate mother wavelet function must be chosen for the analysis. After continuous
testing and adjustment, the 6-layer Dmey wavelet with the best extraction effect was
finally chosen to extract the periodic components. The Figure 3.21 below shows the
results of wavelet decomposition of the 3D accelerometer data of Walking at normal
speed. The Dmey wavelet is a good approximation of the Meyer wavelet leading to FIR
filters that we can use in the discrete wavelet transform. Since it has more obvious spike
characteristics, it is easier for us to detect peaks in the next step.

3.3.4 Peak detection

In the last part, we get peaks from different level of wavelet transform according to the
frequency range we found in FFT part. The peak detection algorithm is simple: find the
local maximum, and because our data is smooth, there is no need to consider the effect
of noise. As long as a point is found with two neighbour points smaller than it, it is the
local maximum. Then we mark it as a peak.

For example, in Figure 3.19, the frequency range of running is 2.66 to 2.99Hz, then
we choose level 3 wavelet transform result with frequency range 0 to 3.12Hz. We will
demonstrate the whole process with a running data including 30 steps. From Figure
3.22 we can see the peak of acceleration data in spectrum is (2.4,0.37), then we find
peaks on a 3 level wavelet transform with range 0 to 3.12Hz showed in Figure 3.23.We
found 30 peaks means there are 30 steps. In Figure 3.24, peaks are projected on the
original data.
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Figure 3.21: Accelerometer data of Walking at normal speed after wavelet transform
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Peak detection on 3 level wavelet transform

0.6

‘q‘ 7 j T( 30 peaks
04| f\ T \“\ M ]
H\MM\ \H‘ \‘\ SRRl
HH H H “‘ ‘H‘ W H‘\ \U “‘W“‘ HH‘
0.2} “MH ‘HH“\H“M ‘
. HH\
t *H
} \‘HH’V
\
1} \ H‘ H N
o4l M‘u‘v*“ﬂ¢h“MH* ‘ u
HH\ |
| e \ U
| \‘
-0.6 L - L ! 1 I |
0 50 100 150 200 250 300 350

Figure 3.23: Peak detection on 3 level wavelet transform of Running
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Evaluation

4.1 Result of hierarchical machine learning model

Two architectures of deep learning models are deployed in this section: a CNN and
a CNN+GRU model. The CNN model is the model offered in the Internet of Things
course, and it is used as a baseline for comparison in this section.

Additionally, the effect of sampling frequency and sensor type on the model performance
are investigated. Three sets of data are compared. To begin, data from the accelerometer
and gyroscope were collected at a 25Hz sampling rate, followed by data from the
accelerometer at a 25Hz sampling rate and finally data from the accelerometer at a
12.5Hz sampling rate. Because the sample rate and the presence or absence of a
gyroscope alter the RESpeck’s endurance, we wanted to test if there was a substantial
variation in the model outputs between data obtained at low and high power. We can
choose whether to activate the gyroscope and sample at a 25Hz rate.

Also, we investigated the effect of window size to the classification accuracy. Three
different window size 32,64 in 25Hz data,and half of them in 12.5Hz data are used.
Sliding windows with shorter duration, such as 16 in 25Hz or 8 in 12.5Hz, require us to
determine the activity state every 0.64 seconds. Numerous human activities last longer
than this, and hence shorter window sizes are disregard. Longer sliding windows, such
as 128 in 25Hz or 64 in 12.5Hz, require making a decision every 5 seconds, which
surpasses the duration of many human activities. Many brief activities occur within 2-3
seconds, and when a window comprises multiple activities, the system’s robustness is
weakened.

All the models are trained with 100 epochs with a learning rate set to 0.0003 and Adam
Optimiser. Leave-one-subject-out method is used as the validation method, and train
three times to take the average result.

4.1.1 First layer - IsShuffle

Although a model is trained for nine classes in the first layer, the only concerned one is
shuffle walking. Due to the imbalance in the training set, using classification accuracy

24
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as a metric for model accuracy would create complications; for example, if the model
identified all shuffle walks as walks, the total accuracy would still be about 80% due to
the scarcity of shuffle walk data. As a result, the confusion matrix is used to illustrate
the classification model’s results for this layer. The confusion matrix aggregates and
categorises the number of correct and wrong predictions using count values.

-1.0

Climbing stairs D 0 0 0-08—0-06
Descending stairs
Desk work

Lying down

® ® ® ® 1 ) i !!'

True label

Running

Shuffle walking

Standing/Sitting

Walking at normal speed

Predicted label

Figure 4.1: IsShuffle confusion matrix using 25Hz Acc and Gyro data

Figure 4.1 and Figure 4.4 are confusion matrix of CNN+GRU structure model trained
using 25Hz Acc and Gyro data and only 12.5Hz Acc data respectively. Comparing
these figures shows that the gyroscope data is crucial to distinguishing shuffle walking.
With the gyroscope, almost all shuffle walks can be accurately classified. When only
the 12.5Hz accelerometer data used, there is a surprising drop in accuracy, leaving only
36%. 29% and 33% of the shuffle walks are classified as standing/sitting and Desk
work. Therefore we can conclude that because of the shuffle walking movement in
which participants are asked to imitate an older adult walking, The pace is slower, and
the range of movement is smaller than regular walking. Therefore, the variation in
acceleration is also more minor.

Similarly, desk work and standing/sitting are static movements, showing slight variation
in acceleration. Therefore, our model cannot differentiate between shuffle walking and
desk work, standing/sitting if only accelerometer classification is used. This result is
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Figure 4.2: IsShuffle confusion matrix using 12.5Hz Acc data

consistent with our visual observations of the shuffle walking accelerometer data.

The best accuracy was achieved with 25Hz Acc+Gyro with window size 64 and the
worst classification accuracy was achieved with 12.5Hz Acc with window size 32. The
model in the first layer accurately identifies shuffle walking, and if the classification
result is non-shuffle walking, then the original data is fed into the model in the second
layer.

4.1.2 Second layer - IsWalk

In the second layer, Iswalk, the walking and non-walking states are separated. The
walking states include running, regular walking, going up stairs and going down stairs.
Walking is distinct from other human activities in that it has a strong periodicity. As a
result, our classification accuracy increases when numerous walking cycles are covered
inside a window. The experimental results illustrate this, with classification accuracy
constantly rising from 32 to 64 window sizes.Since this is a binary classification task, our
loss and activation functions are chosen to be more binary-friendly binary crossentropy
and sigmoid functions.

Surprisingly, the addition of Gyroscope data resulted in a reduction in the accuracy
of the walking classes. This indicates that the gyroscope is not required for walking
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Model Data Window size fl-score Val Loss
CNN 25Hz Acc+Gyro 32 93.23% 0.1398
CNN+GRU  25Hz Acc+Gyro 32 96.66% 0.1229
CNN 25Hz Acc 32 93.37% 0.0655
CNN+GRU 25Hz Acc 32 95.37% 0.1251
CNN 12.5Hz Acc 16 94.43% 0.1258
CNN+GRU 12.5Hz Acc 16 95.00% 0.1322
CNN 25Hz Acc+Gyro 64 96.21% 0.1244
CNN+GRU  25Hz Acc+Gyro 64 97.81% 0.0896
CNN 25Hz Acc 64 97.21% 0.1154
CNN+GRU 25Hz Acc 64 98.29 % 0.0996
CNN 12.5Hz Acc 32 95.86% 0.0916
CNN+GRU 12.5Hz Acc 32 97.87% 0.0786

27

Table 4.1: Classification accuracy and loss of each model on second layer

categories other than shuffle walking.

4.1.3 Third layer - FourTypeWalk

A four-class classifier in the final layer is deployed to classify different sorts of walks.
It’s worth noting that, because our step counting algorithm is identical for walking up
and down stairs and for walking normally, the distinction between these three sorts of
walks is irrelevant. We need establish a distinction between these three categories and
running.

Model Data Window size fl-score Val Loss
CNN 25Hz Acc+Gyro 32 93.98% 0.1884
CNN+GRU  25Hz Acc+Gyro 32 94.45% 0.1424
CNN 25Hz Acc 32 95.12% 0.1721
CNN+GRU 25Hz Acc 32 95.37% 0.1251
CNN 12.5Hz Acc 16 93.12% 0.2423
CNN+GRU 12.5Hz Acc 16 95.00% 0.1322
CNN 25Hz Acc+Gyro 64 93.30% 0.2030
CNN+GRU 25Hz Acc+Gyro 64 95.65% 0.2820
CNN 25Hz Acc 64 94.95% 0.0952
CNN+GRU 25Hz Acc 64 96.65 % 0.0832
CNN 12.5Hz Acc 32 94.43% 0.2815
CNN+GRU 12.5Hz Acc 32 95.65% 0.1762

Table 4.2: Classification accuracy and loss of each model on Third layer, CNN+GRU
using 25Hz Acc with window size 64 is bolded as it is the best represented model.

Running and the other three kinds of walking are accurately classified, most likely
because their frequencies are different.
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Figure 4.3: IsWalk confusion matrix using 25Hz CNN+GRU data with best perfor-
mance,CNN+GRU using 25Hz Acc with window size 64 is bolded as it is the best
represented model.

4.2 Step counting algorithm performance

4.2.1 Data for evaluating step counting algorithms

For each of the five types of walking, quantitative walking data were collected. Ten
volunteers were asked to take 30 steps for each walking type. Data were collected using
a 25Hz accelerometer and gyroscope. Again we compared 25Hz acceleration data,
12.5Hz acceleration data and 25Hz gyroscope data.

4.2.2 Results on Walking at normal speed, Climbing and Descend-
ing stairs
Firstly the accuracy is calculated by the following formula.

|Stepdetected - 30|
30

4.1)

Accuracy =1 —

A peak detection(PD) algorithm is applied and our proposed wavelet transform method(WT)
on these 30 steps data. For Walking at normal speed, Climbing and Descending stairs,
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Figure 4.4: FourTypeWalk confusion matrix using 25Hz CNN+GRU data with best
performance

PD algorithm has a minimum peak distance 12. This value is imperial and is set by
predicting the frequency of the action. WT algorithm us a 4 level wavelet transform,
it filters frequencies to a range of 0 to 1.56Hz. Similarly, climbing stairs and descend-
ing stairs has the same step counting algorithm parameters. We find that there is no
significant difference between the gyroscope data and acceleration data for the two
algorithms.

From the three tables, we can observe that our new proposed method, the WT algorithm,
has very similar accuracy to the PD algorithm, which misses or overcounts steps. The
WT algorithm, on the other hand, tends to undercount steps which means more false
negative steps.

Our investigation found that our algorithm tends to count fewer steps when the highest
frequency of the walk exceeds the frequency range of the fourth layer wavelet transform,
which is 1.56. This means that we may be filtering out the frequencies that are most
representative of walking activity.

For subject 2 in table4.3, subjects 7, 8 in table4.4 and subjects 3, 5, and 11 in table4.5,
we reused the WT algorithm, using the wavelet transform in three layers (frequency
range 0-3.12) and obtain results close to 30 steps.
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subject ID PD on Acc PDonGyro WTonAcc WT on Gyro
subjectl 34 32 31 31
subject2 26 26 21 18
subject3 32 24 26 23
subject4 34 29 27 32
subject5 30 28 26 17
subject6 32 31 31 32
subject7 32 29 31 30
subject8 28 26 25 20
subject9 30 34 30 30
subject10 31 30 30 28
subjectl11 28 26 29 26
AVG Accuracy 0.9303 0.9121 0.9151 0.8393
STD 0.04595 0.0590 0.0857 0.1542

Table 4.3: Walking at normal speed

subject ID PD on Acc PDonGyro WTonAcc WT on Gyro
subjectl 28 27 28 23
subject2 34 31 29 25
subject3 31 32 30 26
subject4 37 34 34 32
subject5 34 36 33 31
subject6 32 27 24 20
subject7 26 26 21 24
subject8 27 33 21 28
subject9 31 29 28 20
subject10 34 35 33 34
AVG Accuracy  0.8933 0.8933 0.8933 0.8466
STD 0.04595 0.0573 0.0512 0.0956

Table 4.4: Climbing stairs

4.2.3 Results on Running

For Running, PD algorithm has a minimum peak distance 6. This value is imperial
and is set by predicting the frequency of the action. WT algorithm us a 3 level wavelet
transform, it filters frequencies to a range of 0 to 3.12Hz.

There is no significant difference between the gyroscope data and acceleration data for
the two algorithms. In running, the WT algorithm has a higher accuracy than the PD
algorithm. The high accuracy of the WT algorithm for the runs is that the ten running
data we collected had the highest frequency points in the range of 2.66 to 2.99Hz, all in
the frequency interval 0-3.12 Hz of the third layer wavelet transform. Therefore the WT
algorithm can filter the noise sufficiently and retain the critical frequencies.
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subject ID PD on Acc PDonGyro WTonAcc WT on Gyro
subjectl 29 28 26 19
subject2 25 26 27 26
subject3 27 27 21 21
subject4 32 29 24 26
subject5 23 21 23 20
subject6 33 30 27 28
subject7 30 31 30 29
subject8 32 31 29 33
subject9 34 32 30 29
subject10 34 35 32 30
subjectl1 31 30 23 25
AVG Accuracy 0.9030 0.9151 0.8727 0.8484
STD 0.0642 0.0845 0.0972 0.1217

Table 4.5: Descending stairs

subject ID PD on Acc PDon Gyro WTonAcc WT on Gyro
subjectl 34 32 32 32
subject2 34 35 32 31
subject3 29 18 31 25
subject4 36 34 32 31
subject5 33 31 31 32
subject6 29 28 31 31
subject7 31 27 31 30
subject8 32 31 30 31
subject9 32 30 30 27
subject10 31 31 30 29
subjectl1 33 33 30 28
AVG Accuracy 09151 0.8969 0.9696 0.9151
STD 0.0519 0.1048 0.0264 0.0422

Table 4.6: Running

4.2.4 Results on Shuffle walking

For Shuffle walking, PD algorithm has a minimum peak distance 15. This value is
imperial and is set by predicting the frequency of the action. WT algorithm us a 5 level
wavelet transform, it filters frequencies to a range of 0 to 0.78Hz.WT’s gyroscope data
has the highest accuracy in shuffle walking, close to 80%. We can observe that WT has
good results for shuffle walks where the highest frequencies are 0-0.78Hz. However,
subjects 1, 2, 5 and 9 all have frequencies above 0.78Hz at the highest point, reaching
around 1Hz. We performed a four-level wavelet transform frequency range of 0-1.56Hz
on these data and obtained results for about 30 steps.
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subject ID PD on Acc PDonGyro WTonAcc WT on Gyro
subjectl 26 26 19 20
subject2 28 28 17 19
subject3 41 46 32 32
subject4 47 48 34 35
subject5 29 28 15 18
subject6 51 50 34 34
subject7 35 38 29 30
subject8 42 38 30 31
subject9 21 28 14 15
subject10 39 39 32 32
AVG Accuracy 0.6966 0.7033 0.7733 0.7933
STD 0.2040 0.2172 0.1970 0.1685

Table 4.7: Shuffle walking

4.2.5 Conclusions of step counting algorithms result

The data above was originally tested at 25Hz, but we retested it at 12.5Hz. The outcomes
were nearly comparable. The frequency with which data is sampled has little effect on
either algorithm. It’s worth mentioning that the PD algorithm’s minimum peak distance
has been halved, while the level of WT algorithm has been increased by one while
testing.

Since the data collection process varies considerably in terms of the start pace and final
pace subjects take, their patterns are not the same as those of the intermediate paces,
which may cause bias. Also, as subjects press the start record button themselves during
the data collection, some data may be long or short, including data from unrelated walks
or end the recording early. For these reasons, the overall accuracy of our algorithm may
be slightly lower than it is.

The critical data for step counting is the frequency of the data, which can alternatively
be characterised as the walk’s speed; the type of walk is irrelevant. Both PD and WT
can be thought of as indirect methods for determining the final number of steps by
frequency; PD uses the empirical minimum wave distance, whereas WT uses an FFT
to obtain the highest frequency. Unfortunately, the FFT requires approximately 300
sampling points to determine the most representative frequency. As a result, we cannot
conduct this in real-time step counting to calculate the walk’s frequency.

The machine learning model’s determination of the kind of walk is more akin to a
forecast of the true frequency associated with the type of walk based on prior experience.

4.3 Practical results using Android App

To validate the system’s practicality, we deployed the app for Android and compared
the results to those obtained from commercial pedometers. TensorFlow exports our
model to the Tflite format, which Kotlin can read. For faster development, we also use
Python code in Android Studio via the Chaquopy package.
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The chosen classifier was a CNN+GRU model that used accelerometer and gyroscope
data and a 64-window length. Although the accuracy of using the accelerometer alone
was higher in the two layers for recognizing walking, it was not significantly higher. In
order not to increase the complexity of the system, we chose to use the gyroscope and
accelerometer together. We get data from RESpeck and initiate categorization whenever
a window is filled with data. We employed a half-overlapping window to reduce
classification time, retaining the last 32 bits of the window after each classification,
reducing classification time from 2.56 seconds to 1.28 seconds.

Following classification, we determine the appropriate step counting algorithm settings
based on the classification results, which are different wavelet transform levels for the
WT algorithm and different minimum peak distance for the PD algorithm.

Although categorization occurs every 1.28 seconds, we did not want our step counting
method to run so frequently. Because if the user took ten steps continuously, separating
it into a 1.28-second window would prevent us from capturing the total number of steps
taken across both windows. Additionally, an excessive number of breakpoints would
have an effect on our PD algorithm, leading it to count less steps.

As a result, we preserved both the present and prior activity states. If the categorization
result indicated that the walk was always the same kind, we stored the data until the
state changed. After the status change, we count the number of steps and empty the list
where the walk data is stored.

In Algorithm 1 we show this process in pseudo-code.

When the pedometer function is enabled, the current step count is displayed prominently
in the user interface. To facilitate testing, we have added a ’clear’ button that resets the
counter to zero showed in figure4.5.

4.3.1 Comparison to consumer device

The accuracy is calculated by the following formula

|Stepdetected - 200’
200

4.2)

Accuracy =1 —

Performance should be compared to regular consumer pedometers. This section com-
pares results of PD , WT, apple watch and health app. To be clear, we can only assess the
run count accuracy RCA which only interested in the total number of steps counted, not
in false positive or false negative since consumer pedometer algorithms are confidential.

The subjects were instructed to walk two hundred steps, walk 40 steps,run 40 steps, and
shuffle walk 40 steps. They were also instructed to go upstairs, downstairs four times,
ten steps each time. To ensure the classification algorithm’s robustness, the activity
data from the subjects in this experiment were omitted from the training set.The Apple
Watch is worn on the left wrist, while the phone is kept in the left trouser pocket. All
participants were between the ages of 18 and 22, with three males and two females.

As can be seen from the experimental findings, Apple watch achieves the greatest
results, while WT’s results on the 30-step data tend to count less steps. This is because,
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Algorithm 1 Step counting using live data
Data: (xAcc, yAcc, zAcc, xGyro, yGyro, zGyro) > *3 axis data send from RESpeck’s
acclermeter and gyroscope through Bluetooth

’window’ > *64*6 floatArray stores 3 axis data
’windowIndex’ =0 > *index of window
"WalkData’ > * floatArray stores walk data
Result: Counted steps > * Steps of a single continuous walking activaty

while Step counting function on do
if windowlIndex <= 378 then
append (xAcc, yAcc, zAcc, xGyro, yGyro, zGyro) to window

windowIndex + =6
else
currentState = HierarchicalClassification(window)

if currentState = ”Not walk” and lastState == ”Not walk” then
| append window to WalkData

end

if currentState '= ”Not walk” and currentState == lastState then
drop last 32 data of WalkData

append window to WalkData
end
if currenState = ”Not walk” and currentState | = lastState and lastState | =

”Not walk” then
steps + = countStepbystate(lastState, WalkData)

WalkData.clear()
append window to WalkData
drop last 32 data of WalkData

end
if currentState == ”Not walk” and lastState != ”Not walk” then
steps + = CountStepbystate(lastState, WalkData)
WalkData.clear()
end

lastState = currentState
remove front half part in window
move remain last half part in window to front

end
end
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RESpeck readings
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Figure 4.5: User interface

while the classification system can recognise activity as normal walking, walking at
varying speeds and frequencies can result in step undercounting.

PD has an accuracy rate of 93.1 percent, which is quite good. Although our proposed
WT is not as accurate as PD, we know from our study of frequency that frequency, and
probably speed, is the most important component affecting step counting accuracy. This
will aid us in our further research.

It’s worth noting that while PD and WT show comparable accuracy on 30-step data,
with WT being slightly more accurate, WT is 5% less accurate on 200-step data than
PD. This is because PD counts fewer steps when walking quickly and more steps
when walking slowly. Thus, when we reach 200, the false positive and false negative
steps cancel out; as a result, the PD has a high accuracy rate. However, if the walking
frequency is within the frequency range of a certain wavelet transformation level, WT
will produce a very accurate result. When the walking frequency exceeds the specified
range of wavelet transform layers, however, WT returns a smaller number of steps.
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subject ID PD on Android WT on Android Apple watch Steps app
subjectl 211 169 201 233
subject2 197 188 194 231
subject3 194 166 192 222
subject4 218 172 222 223
subject5 231 179 211 221
AVG Accuracy 0.9310 0.8879 0.9520 0.8699
STD 0.0542 0.0541 0.0350 0.0248

Table 4.8: Comparison to Consumer Device
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Thus, PD is more accurate when the overall number of steps is considered rather than

the precision of each individual step.
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Conclusions

5.1 Discussion

We constructed an end to end pedometer system and compared the accuracy of various
step counting algorithms in this work. Our system comprises two components: the first
is a walk classification method, and the second is a step counting algorithm. Our initial,
intuitive solution was to apply step counting algorithms with different thresholds for
different types of walking. However, we discovered through experimentation that the
specific kind of walk does not affect the step counting problem or that the type of walk
is merely an expression of walking frequency. A high-frequency walk is referred to as a
run, a moderate frequency walk is referred to as walking, going up and downstairs, and
a low-frequency walk is referred to as shuffle walking. Calculating the number of steps
accurately is highly dependent on the frequency of walking. Therefore, to keep better
track of steps, we should classify walking activities according to their frequency rather
than simply using literal expressions. As a result, we can distinguish only between
walking and non-walking activities. Machine learning approaches can then be used to
predict the frequency.

For a better generalization ability, a complete research should take into account a wide
number of participants with varying genders, ages, heights, weights, and health status.
This is to ensure that new users may be supported without the requirement for extra
training data collection. However, for a variety of objective reasons, the data for this
work 1s mostly collected from the age range of 19 to 23 years. Although they were
instructed to mimic an elderly person’s walking pattern, the outcome may still vary from
the real scenario. Therefore, to further improve the system’s robustness, it is essential
to gather more data from diverse age, height, weight, and gender groups. At the same
time, dataset should maintain a balance in the quantity of data collected for each group
to avoid deep learning model from producing bias.

We observe that our newly proposed approach for computing wave crests following
wavelet transform has a high accuracy while its frequency is in the n-th level wavelet
transform range. However, because each person’s walking patterns vary, even for the
same type of walking, their frequency domain peaks may be in two levels of the wavelet
decomposition. If we apply a higher level wavelet transformation on a frequency lower
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than its peak, our algorithm will calculate fewer steps. Therefore, in future work, we
might convert the classification results of deep learning classifiers to regression models
to determine walking frequencies.

5.2 Future work

In essence, shuffle walking, walking, and running are all variations in speed, proportional
to frequency. As the frequency domain peaks for ascending and descending stairs and
walking are identical, we can utilise the same level in the wavelet decomposition. Given
that our ultimate goal is to get steps, accurately classifying walking styles is not the
primary objective. As a result, once the second layer of the model has identified the
state as walking, the third layer can no longer focus on the specific type of walking.
Instead, training a regression model to estimate the walking frequency and thus choose
the appropriate number of wavelet transform levels to achieve accurate step counting.
We may perform an FFT on all the walk data and use the frequency domain peak as the
model’s y-value.

Another idea is to acquire step counts using deep learning models. Lin’s approach
involved collecting walking data and labelling a timeline based on recorded movies,
denoting when each foot touched the ground as a step[24]. He and his team manually
labelled 60,820 actual steps in their work and achieved an accuracy of 86 percent. This
approach was initially adopted, but it was too time-consuming to track the number of
steps, and the deep learning model required excessive data to train, so the approach is
abandoned. However, we can now utilise the proposed method to automatically mark
the number of steps, eliminating the time spent manually recording the data.
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Appendix A

Data Compliance and documentation

A.1 Data complicance

All the data that it is used in this project has been collected with the RESpeck device.
Given that this work involves data recorded with the RESpeck developed in the Centre
for Spleckled Computing a Non-Disclose Agreement (NDA) was needed. The NDA
was signed between the recipient (me) and the discloser (Professor DK K Arvind) on the
22th of February of 2021. The template of the NDA can be found next. The Participants’
information sheet and Participants’ consent form are listed below too.

43



Non-Disclosure Agreement for sharing of programs and
data-sets

Date: 22 February 2021
Parties:
Name:

Address:

(the Recipient)
and

Professor D K Arvind, Centre for Speckled Computing, School of Informatics, University of
Edinburgh, Scotland, U.K.

(the Discloser)

1. The Discloser intends to disclose information in the form of electronic programs and datasets (the

Confidential Information) to the Recipient for the purpose of undertaking work as part of their Masters
project (the Purpose).

2. The Recipient undertakes not to use the Confidential Information for any purpose except the
Purpose, without first obtaining the written agreement of the Discloser.

3. The Recipient undertakes to keep the Confidential Information secure and not to disclose it to any
third party, who know they owe a duty of confidence to the Discloser and who are bound by obligations
equivalent to those in clause 2 above and this clause 3.

4. The undertakings in clauses 2 and 3 above apply to all of the information disclosed by the Discloser
to the Recipient, regardless of the way or form in which it is disclosed or recorded but they do not apply
to:

a) any information which is or in future comes into the public domain (unless as a result of the

breach of this Agreement); or



b) any information which is already known to the Recipient and which was not subject to any
obligation of confidence before it was disclosed to the Recipient by the Discloser.

Nothing in this Agreement will prevent the Recipient from making any disclosure of the
Confidential Information required by law or by any competent authority.

The Recipient will, on request from the Discloser, return all copies and records of the Confidential
Information to the Discloser and will not retain any copies or records of the Confidential Information.

Neither this Agreement nor the supply of any information grants the Recipient any licence, interest
or right in respect of any intellectual property rights of the Discloser except the right to copy the
Confidential Information solely for the Purpose.

The undertakings in clauses 2 and 3 will continue in force indefinitely.

This Agreement is governed by, and is to be construed in accordance with, Scottish law. The

Scottish courts will have non-exclusive jurisdiction to deal with any dispute which has arisen or may
arise out of, or in connection with, this Agreement.

Signed and Delivered as a Deed by:

Name:

Sheewn Shi

Signature

in the presence of:

Signature of witness

Name of witness
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Participant Information Sheet

Project title: Classification of Physical Activities and Social
Signals using a wearable Respeck monitor
Principal investigator: D.K. Arvind

Researcher collecting data: | Celina Dong/ Stylianos Charalampous/ Shuai Shi

Teodora Georgescu

This study was certified according to the Informatics Research Ethics Process, RT
number 2019/27996. Please take time to read the following information carefully.

You should keep this document for your records.
Who are the researchers?

The three students, Celina Dong, Stylianos Charalampous and Shuai Shi, will collect
data as part of their undergraduate projects. They are all 4"/5th year Masters in

Informatics students at the School of Informatics, University of Edinburgh.

The main researcher is Teodora Georgescu, a Research Associate at the School of
Informatics, University of Edinburgh. Other researchers involved in the project
include Andrew Bates and Sharan Maiya who will provide technical support during
data collection. The project is being supervised by Professor D K Arvind as the
Principal Investigator, under the aegis of the Centre for Speckled Computing,
University of Edinburgh.

What is the purpose of the study?

The aim of the project is to identify physical activity and social signals in people by
analysing data from the Respeck monitor worn as a plaster on their chest. Examples
include walking, running and climbing stairs for physical activities, and social signals
such as coughing, speaking and swallowing (due to eating or drinking). You will be
invited to wear the Respeck device as a plaster on the chest and perform instances
of the examples listed previously. You will be filmed during one part of the data
collection for the purpose of correct data labelling — in the post-processing part of
your data we will use the video as a guide to correctly label the data with the
appropriate activities you performed. Your data will be collected and added to a mix

of similar data collected from other volunteers which will be analysed to classify

THE UNIVERSITY of EDINBURGH

informatics




Page 2 of 6

accurately the different activities. The labelled data collected will be used to train

machine learning models trained to distinguish accurately between them.
Why have | been asked to take part?

You have been invited to take part in this study because you are either a student at
the University of Edinburgh, or because you belong to an age group that our

research is interested in.

Do | have to take part?

No — participation in this study is entirely up to you. You can withdraw from the study
at any time without giving a reason. After this point, personal data will be deleted and
anonymised data will be combined such that it is impossible to remove individual
information from the analysis. Your rights will not be affected. If you wish to
withdraw, contact the PIl. We will keep copies of your original consent, and of your

withdrawal request.

What will happen if | decide to take part?

You will be invited to wear the Respeck device encased in a small disposable bag
with the blue, flat surface against the skin just below your ribcage and secured to

your chest with the medical tape provided.

Please ensure the device is the right way up, i.e. you can read the text on the flat

side of the device.

A mobile phone with a specially designed application will automatically collect data

from the Respeck device.

You will be asked to perform a series of gentle activities as listed below. The

optional activities will be only be administered for the students,
Physical activities:

- Sitting down (straight, bent forward, bent backward)
- Standing up
- Lying down (back, front, left, right)

- Walking at three different speeds (slow, medium and fast)
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- Ascend/Descend a set of stairs

- (Optional) Wear when travelling in a bus/car/train

- (Optional) Riding a bike

- Moving your body at the waist from left to right and repeat 5 times.
- Swinging your body to the front and back and repeat 5 times

- Running
Social signals:

- Coughing

- Talking

- Eating/Drinking

- Singing

- Laughing

- Breathing normally

- Hyperventilating

You might be asked to perform some of these activities at the same time, such as
coughing when you are lying down. The intensity of these activities will be adjusted
to your comfort level. Each activity and social signal will be recorded for at least 30
seconds, and tiring activities, such as forced coughing, will be divided into shorter

segments of 10-15 seconds of continuous coughing.

For the second part of the data collection, you will be asked to perform a sequence
of activities, uninterrupted, in order to simulate the real data we might be getting from
Respeck wearers. During this time you will also be filmed using a simple phone
camera operated by the data collector. We ask for your permission to film you so
that, in the post-processing phase of the collection, we can accurately label the

actions you performed.

At any point in time, if you feel that you do not wish to continue with the study, then

please feel free to let me know and the study will be stopped immediately.
Are there any risks associated with taking part?

You'll be invited to wear the Respeck device which has undergone the necessary

safety tests. Participants with known plaster/plastic allergy will be excluded. The
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device is enclosed in a disposable plastic bag and is not in direct contact with the
skin. The Respeck device is cleaned and sterilised once returned. There are no
significant risks associated with participation. The researchers will maintain at least

2m social distance and will wear masks and safety visor.
Are there any benefits associated with taking part?
No.

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and
presentations. Quotes or key findings will always be anonymous. With your consent,
information can also be used for future research. Your data may be archived for a
minimum of 5 years.

With your consent, the research team might share the fully anonymised data of this
study with other researchers outside of the University of Edinburgh as part of
publications.

Data protection and confidentiality.
Your sensor data will be processed in accordance with Data Protection Law. All
information collected about you will be kept strictly confidential. Your data will be

referred to by a unique participant number rather than by name.

Your sensor data will only be viewed by the research team: Teodora Georgescu,
Andrew Bates and Professor D K Arvind for this project. Your anonymised data may
be used in other ethically approved research projects supervised by Professor D K
Arvind or be made available to other researchers outside of the University of
Edinburgh as part of publications. By signing the consent form, you agree to such

usage.

Summaries of the anonymised sensor data is stored on the University’s secure

encrypted cloud storage services datasync (https://www.ed.ac.uk/information-

services/computing/desktop-personal/datasync), for which the research team has

writing access and MInf and Year 4 project students supervised by Professor Arvind
will have reading access. We only store summaries of accelerometer data, and not

personal information such as name, age or address.
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Your consent information will be kept separately from your responses in order to

minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide. You
have the right to access information held about you. Your right of access can be
exercised in accordance Data Protection Law. You also have other rights including
rights of correction, erasure and objection. For more details, including the right to
lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

Who can | contact?
If you have any further questions about the study, please contact Teodora

Georgescu (tgeorges@ed.ac.uk).

If you wish to make a complaint about the study, please contact:
Professor D K Arvind (dka@inf.ed.ac.uk) or the Informatics Ethics Panel (inf-
ethics@inf.ed.ac.uk).

When you contact us, please provide the study title and detail the nature of your

complaint.

Updated information.

If the research project changes in any way, an updated Participant Information
Sheets will be made available on request from Teodora Georgescu
(tgeorges@ed.ac.uk).

Alternative formats.
To request this document in an alternative format, such as large print or on coloured

paper, please contact Teodora Georgescu (tgeorges@ed.ac.uk).
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General information.

For general information about how we use your data, go to: edin.ac/privacy-research
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Participant number:

Participant Consent Form

Project title:

a wearable Respeck monitor

Classification of Physical Activities and Social Signals using

Principal investigator (PI):

D.K. Arvind

Researcher:

Celina Dong/ Stylianos Charalampous/Shuai Shi/
Teodora Georgescu

Pl contact details:

dka@inf.ed.ac.uk

By participating in the study you agree that:

e | have read and understood the Participant Information Sheet for the above study,
that | have had the opportunity to ask questions, and that any questions | had were
answered to my satisfaction.

e My participation is voluntary, and that | can withdraw at any time without giving a
reason. Withdrawing will not affect any of my rights.

¢ | consent to my anonymised data being used in academic publications and

presentations.

¢ | understand that my anonymised data will be stored for the duration outlined in the
Participant Information Sheet.

Please tick yes or no for each of these statements.

1. | agree to my physical activity being recorded using the Respeck
monitor.

Yes No
2. | agree to being video recorded.

Yes No
3. lallow my data to be used in future ethically approved research.

Yes No
4, | agree to take part in this study.

Yes No
Name of person giving consent Date Signature
Name of person taking consent Date Signature
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